

Ph.D Final Exam

Simulation of Space-Based Radar Observations of Precipitation

Direk Khajonrat

Colorado State University Department of Electrical and Computer Engineering

> Committee: Dr. V. Chandrasekar (Advisor) Dr. Branislav Notaros Dr. A. Jayasumana Dr. Paul W. Mielke

> > Fort Collins, Colorado June 23, 2008

Outline

- Research Goal
- Background and Theoretical framework
- Space-based radar observations characteristics and analysis
- Microphysical model development
- Simulation of space-based radar observation
- Study and simulation of tropical storms
- Summary, conclusions, and suggestions for future work

Research Goal

"To develop methodologies for simulating space-based radar observations of precipitation using current space-based precipitation radar observations and earth-based radar measurements"

Background on space-based radar observations of precipitation

1997	Current	Future				
Tropical Rainfall Mea Mission (TRMM)	asurement satellite	Global Precipitation Measurement (GPM) satellite				
Joint mission between and JAXA (Japan)	NASA (US)	Joint mission between NASA (US) and JAXA (Japan)				
Instruments on board TRM	M	Instruments on board GPM				
 Precipitation radar (PR) 		• Dual-frequency precipitation				
• TRMM Microwave Imager (TMI)		Tauai (DTK)				
• Visible and Infrared Scanner (VIR	S)	GPM Microwave Imager (GMI)				
• Clouds and the Earth's Radiant En (CERES)	ergy System	• Additional 8 constellation satellites carrying passive microwave rain radiometer				
 Lightning Imaging Sensor (LIS) 						

Background : TRMM-PR (Currently operating)

Background : GPM-DPR

Global Precipitation Measurement (GPM) Satellite

Width= 245

km

• Coverage area 65°S – 65° N

Dual-frequency Precipitation Radar (DPR)

- Ku-band (13.6 GHz) similar to TRMM-PR
- Ka-band (35.6 GHz) –0.87 cm. wavelength

Key benefits of GPM-DPR

- Improve accuracy of rainfall rate estimate via accurate estimate of DSD parameters.
- Be able to discriminate between rain and frozen precipitation

Motivation

Theoretical Framework: Electromagnetic & Microphysics

• Radar reflectivity from precipitation particles

$$Z = \frac{\lambda^4}{\pi^5 \left| K_p \right|^2} \int \sigma_b(D) N(D) dD$$

where $|K_p| = \left|\frac{\varepsilon_r - 1}{\varepsilon_r - 2}\right|^2$ is dielectric factor of pricipitat ion particles

 \mathcal{E}_r is complex dielectric constant

• Radar cross-section of precipitation particles

$$\sigma_b(-\hat{i},\hat{i}) = 4\pi \left| \vec{f}(-\hat{i},\hat{i}) \right|^2$$

 \vec{f} is the scattering amplitude

 \hat{i} is incident wave direction

Theoretical Framework: Electromagnetic & Microphysics

- Specific attenuation (k) of wave propagating through precipitation defined as
 - $k = 4.343 \times 10^3 \int \sigma_{ext}(D) N(D) dD$ dB/km
- Extinction cross-section of precipitation particles

$$\sigma_{ext} = \frac{-4\pi}{k_o} \operatorname{Im} \vec{f}(\hat{i}, \hat{i}) \cdot \hat{e}_i$$

where

 \vec{f} is the scattering amplitude,

$$k_o = 2\pi/\lambda$$

 \hat{e}_i is polarization state of incident wave

• Measured reflectivity (Zm) is defined as

$$Zm(r) = Ze(r)\exp\left[-0.2\ln 10\int_0^r k(s)ds\right] = Ze(r)A(r)$$

Theoretical Framework: Electromagnetic & Microphysics

The particle size distribution (PSD) is based on the normalized gamma model:

$$N(D) = N_W f(\mu) \left(\frac{D}{D_o}\right)^{\mu} e^{-\left(\frac{3.67+\mu}{D_o}\right)D} dD$$

$$f(\mu) = \frac{6}{3.67^4} \frac{(3.67 + \mu)^{\mu+4}}{\Gamma(\mu+4)}$$

where μ is shape parameter.

 D_o is the median volume diameter in mm.

 N_w is intercept parameter (mm⁻¹mm⁻³)

> If μ is fixed. N(D) is controlled by D_o and N_w

Reflectivity (*Ze*) and specific attenuation (*k*) Colorado computation

Ze and k of various type of precipitation particles are computed based on 1000 pairs of PSD parameters (Do and Nw)

At 3 radar frequencies : 1) 2.7 GHz (S-band)
 2) 13.6 GHz (Ku-band)
 3) 35.6 GHz (Ka-band)

Note : $\log = \log 10$

Precipitation Particle	D _o (mm)	N _w (mm ⁻¹ m ⁻³)	μ
Rain	$0.5 \le D_o \le 2.5$	$3.0 \leq logN_w \leq 5.0$	-1 ≤ µ ≤4.0
Melted particles	$1.0 \le D_o \le 3.0$	$2.0 \leq logN_w \leq 4.0$	0
Aggregation of ice crystal (snow/graupel)	$0.5 \le D_o \le 2.0$	$2.0 \leq logN_w \leq 4.0$	0

Precipitation Particle	Density (g/cm-3)	Water Fraction (WF)		
Rain	1.0	1.0		
Melted particles	Vary with WF	0.01 – 0.85		
Aggregation of ice crystal (snow/graupel)	0.1 – 0.4	0.0		

k-Ze Relation and variability of Ze with frequency

40

40

20

0.4 0.3 ((Kn) (qg/km) k(Kn) k(Kn)

0

-40

-20

Ze(Ku) (dBZ)

20

Ze(Ka) (dBZ)

40

60

1 k(Ku) (dB/km) 8.0

2

k-Ze Relation and variability of Ze with frequency

k-Ze Relation and variability of Ze with frequency

Coefficients

Ze(Ka) = a + b*Ze(S)

Ze(Ku) = a + b*Ze(S)

$k(Ka) = \alpha * Ze(Ka)^{\beta}$

$k(Ku) = \alpha * Ze(Ku)^{\beta}$

Ze(Ka) = a + b*Ze(Ku)

	$Z_e(Ka) =$	$a + bZ_e(S)$	k(Ka) = a	$aZ_e(Ka)^{\beta}$		$Z_e(Ku) =$	$a + bZ_e(S)$	k(Ku) = c	$\alpha Z_e(Ku)^{\beta}$		$Z_e(Ka) =$	$a + bZ_e(Ku)$
Particle types	a	b	α	β	Particle types	a	b	α	β	Particle types	a	b
Snow/graupel					Snow/graupel					Snow/graupel		
$\begin{array}{l} \rho = 0.05 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.10 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.15 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.20 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.25 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.30 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.35 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.40 \ {\rm g} \ {\rm cm}^{-3} \end{array}$	-3.2575 -2.4729 -2.0339 -1.7291 -1.4955 -1.3061 -1.147 -1.0098	$\begin{array}{c} 0.87242 \\ 0.88633 \\ 0.89496 \\ 0.90146 \\ 0.90678 \\ 0.91135 \\ 0.9154 \\ 0.91906 \end{array}$	0.0002538 0.0002273 0.0002135 0.000204 0.000197 0.0001912 0.0001868 0.0001828	$\begin{array}{c} 1.0764 \\ 1.0792 \\ 1.0805 \\ 1.0819 \\ 1.0835 \\ 1.0852 \\ 1.0865 \\ 1.0883 \end{array}$	$\begin{array}{l} \rho = 0.05 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.10 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.15 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.20 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.25 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.30 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.35 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.40 \ {\rm g} \ {\rm cm}^{-3} \end{array}$	-0.50831 -0.37263 -0.29767 -0.24631 -0.20752 -0.17651 -0.15086 -0.12904	0.97897 0.98202 0.98399 0.98551 0.98676 0.98785 0.98882 0.98969	5e-06 4.5e-06 4.2e-06 4.2e-06 4e-06 4e-06 4e-06	$\begin{array}{c} 0.98144\\ 0.99343\\ 0.99981\\ 1.0025\\ 1.0044\\ 1.0061\\ 1.0073\\ 1.0083 \end{array}$	$\begin{array}{l} \rho = 0.05 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.10 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.15 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.20 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.25 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.30 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.35 \ {\rm g} \ {\rm cm}^{-3} \\ \rho = 0.40 \ {\rm g} \ {\rm cm}^{-3} \end{array}$	-2.8102 -2.2474 -1.9064 -1.6569 -1.4578 -1.2383 -1.0945 -0.96614	$\begin{array}{c} 0.91275\\ 0.91314\\ 0.91348\\ 0.91375\\ 0.91396\\ 0.91898\\ 0.91903\\ 0.91893\\ \end{array}$
Melted particles					Melted particles					Melted particles		
$\begin{split} wf &= 0.1 \\ wf &= 0.2 \\ wf &= 0.3 \\ wf &= 0.4 \\ wf &= 0.5 \\ wf &= 0.6 \\ wf &= 0.7 \\ wf &= 0.8 \end{split}$	$\begin{array}{r} -0.73694\\ -0.37998\\ -0.048003\\ 0.23254\\ 0.34781\\ 0.29574\\ 0.35682\\ 0.49717\end{array}$	$\begin{array}{c} 0.88112\\ 0.88791\\ 0.88364\\ 0.86874\\ 0.87103\\ 0.89583\\ 0.91158\\ 0.94157\end{array}$	$\begin{array}{c} 0.0004432\\ 0.0004204\\ 0.0005359\\ 0.0009077\\ 0.0007553\\ 0.0003683\\ 0.0008656\\ 0.0006854 \end{array}$	$\begin{array}{c} 1.1028 \\ 1.1206 \\ 1.1021 \\ 1.0423 \\ 1.0536 \\ 1.1151 \\ 1.0064 \\ 1.0056 \end{array}$	wf = 0.1 wf = 0.2 wf = 0.3 wf = 0.4 wf = 0.5 wf = 0.6 wf = 0.7 wf = 0.8	$\begin{array}{c} -0.070347\\ -0.048824\\ -0.046588\\ -0.059505\\ -0.069584\\ -0.01878\\ 0.08087\\ 0.01645\end{array}$	$\begin{array}{c} 0.99508 \\ 1.0021 \\ 1.0095 \\ 1.0168 \\ 1.0221 \\ 1.0155 \\ 0.99349 \\ 0.97903 \end{array}$	2.23e-05 1.98e-05 1.5e-05 1.13e-05 9.9e-06 1.23e-05 1.53e-05 3.05e-05	$\begin{array}{c} 0.9402\\ 0.953\\ 0.97756\\ 1.0055\\ 1.0247\\ 1.0162\\ 1\\ 0.93829 \end{array}$		$\begin{array}{r} -0.78052\\ -0.51698\\ -0.27278\\ -0.078396\\ 0.062791\\ 0.15406\\ 0.14174\\ 0.12439\end{array}$	$\begin{array}{c} 0.90717\\ 0.90564\\ 0.9006\\ 0.89207\\ 0.88521\\ 0.88269\\ 0.90459\\ 0.96332 \end{array}$
Rain $\mu = 0$ $\mu = 1$ $\mu = 2$ $\mu = 3$	0.75765 -0.18462 -0.83483 -1.2763	1.0881 1.1379 1.1721 1.1945	0.0005468 0.0005801 0.0006141 0.0006446	0.97905 0.97163 0.96492 0.95933	Rain $\mu = 0$ $\mu = 1$ $\mu = 2$ $\mu = 2$	-1.8792 -1.3599 -0.92941	1.1099 1.0669 1.0329	0.0002159 0.0002757 0.0003321	0.80897 0.79688 0.78806 0.78225	Rain $\mu = 0$ $\mu = 1$ $\mu = 2$ $\mu = 3$	2.2861 0.95818 -0.023823 -0.75494	0.99926 1.0808 1.1414 1.186

Outline

- Research Goal
- Background and Theoretical framework

Space-based radar observations characteristics and analysis

- Microphysical model development
- Simulation of space-based radar observation
- Study and simulation of tropical storms
- Summary, conclusions and suggestion for future work

Observation Characteristics of TRMM-PR

dBZ 29 44 28 40 36 27 32 Horizontal cross-section Latitude 92 28 Of reflectivity 24 20 25 16 12 24 23 -91 -90 -89 -87 -85 -84 -83 -82 -81 1 dBZ 44 42 38 36 34 32 28 26 24 20 18 16 14 12 - B (d) Vertical cross-section Height (km) + 9 9 . Of reflectivity 100 120 140 180 200 220 240 80 Cross track distance (km) 10 10 Measured (Zm Measured (Zm q q Corrected (Ze) Corrected (Ze) Vertical profile Height (km) Height (km) of reflectivity 70 6 10 20 30 40 50 60 70 10 20 30 40 50 60 Reflectivity (dBZ) Reflectivity (dBZ)

TRMM-PR attenuation-correction algorithm

$$Z_m(r) = Z_e(r)A(r)$$

Attenuation factor defined as

$$A(r) = \exp\left[-0.2 \ln(10) \int_{0}^{r} k(s) ds\right]$$

Using k and Ze relaton ($k = \alpha Ze^{\beta}$) Hitchfeld Bordan solution in integral form of Z_m

$$A_{HB}(r) = \left[1 - q \beta \int_{0}^{r} \alpha(s) Z_{m}^{\beta}(s) ds\right]^{1/\beta}$$

In dB unit

$$PIA_{HB} = -\frac{10}{\beta}\log(1-\zeta)$$

where

$$\zeta = q \beta \int_{0}^{r_{s}} \alpha(s) Z_{m}^{\beta}(s) ds$$

HB solution is unstable when PIA is large

Surface reference (SR) technique is used as a constraint, defined as

$$PIA_{SR} = \Delta\sigma^{0} = \left\langle\sigma^{0}_{no-rain}\right\rangle - \left\langle\sigma^{0}_{rain}\right\rangle$$

Estimate most probable PIA (PIA_e) for given ζ and $\Delta\sigma^o$

$$PIA_e = -\frac{10}{\beta} \log(1 - \varepsilon \zeta)$$

 $\boldsymbol{\varepsilon}$ is correction factor, defined in a form as

 $\varepsilon = \frac{1 - 10^{-0.1\beta\Delta\sigma^0}}{\zeta}$ ε is used to adjust α coefficient of k = α Ze β . Then It is also called " α adjustment" method.

$$Z_{e}(r) = \frac{Z_{m}(r)}{\left[1 - \varepsilon q \beta \int_{0}^{r} \alpha(s) Z_{m}^{\beta}(s) ds\right]_{17}^{1/\beta}}$$

Characterization of vertical profile of reflectivity (VPR): Self-organizing map

Convective rain profiles

18

Characterization of vertical profile of reflectivity (VPR): Self-organizing map

Convective profiles Land vs. Ocean

Stratiform rain with bright band

Stratiform rain with bright band

Do and Nw estimation using TRMM-PR observations

The drop-size-distribution (DSD) is based on the normalized gamma model:

$$N(D) = N_W f(\mu) \left(\frac{D}{D_o} \right)^{\mu} e^{-\left(\frac{3.67 + \mu}{D_o}\right)D} dD$$

$$f(\mu) = \frac{6}{3.67^4} \frac{(3.67 + \mu)^2}{\Gamma(\mu + 4)}$$

$\frac{D_o}{PR} \frac{\text{and } N_w}{\text{observations}} \text{ stimate using TRMM-}$

$$k = \alpha Z^{\beta}$$

Normalized by Nw and get new coefficient

$$\left(\frac{k}{N_{w}}\right) = \widetilde{\alpha} \left(\frac{Z}{N_{w}}\right)^{\beta}$$

$$k = \widetilde{\alpha} (N_w)^{1-\beta} Z^{\beta} = \alpha Z^{\beta}$$

$$\alpha = \widetilde{\alpha} (N_w)^{1-\beta} \, \square \hspace{-1.5cm} \mid \hspace{-1.5cm} N_w = \hspace{-1.5cm} \left(\frac{\alpha}{\widetilde{\alpha}} \right)^{\frac{1}{1-\beta}}$$

where α =

$$= \alpha_{ini} \mathcal{E}$$

 \mathcal{E} is correction factor

$$D_0 \approx \left[\frac{Z}{N_w C}\right]^{\frac{1}{7}}$$

$$C = \frac{f(\mu)\Gamma(7+\mu)}{(3.67+\mu)^{7+\mu}}$$

(Chandrasekar et al., 2005)

Distribution of D_o and N_w

Distribution of D_o and N_w

24

Global Map of D_o and N_w

GPM-DPR Observations Characteristics

Dual-frequency retrieval techniques

- 1. Attenuation-corrected-reflectivity-based:
- Two PSD parameters (Nw, Do) are inferred by non-Rayleigh scattering
- Integral or differential equations.
 - Solve forward or backward
- ➢ Backward : Stable but require SRT.
- Forward : SRT is not required but not stable when attenuation is large

2. Attenuation-based : Differential Attenuation Difference (DAD)
- Attenuation convert to rain rate directly using k-R relation

Integral equations for Dual-frequency retrieval

 $= f_{2}(D_{a}(r))$

 $10\log(Z_{e1}(r)) - 10\log(Z_{e2}(r)) = 10\log(f_2(D_o(r)))$

$$DFR = f_3(D_o(r))$$

The specific attenuation, ki(r), at a particular range bin can also be derived as,

$$k_{i}(r) = C_{ki} \int_{D} \sigma_{ti}(D) N(D) dD$$

= $C_{ki} N_{W} f(\mu) D_{o}^{-\mu} \int_{D} \sigma_{ti}(D) D^{\mu} e^{-\Lambda D} dD$
= $N_{W} f(\mu) D^{-\mu} I_{ti}(D_{o}(r))$
 $Z_{mi}(r_{j}) = N_{W} f(\mu) D_{o}^{-\mu} I_{bi}(D_{o}(r_{j})) A_{i}(r_{j})$
 $N_{W}(r_{j}) = \frac{Z_{mi}(r)}{f(\mu) D_{o}^{-\mu} I_{bi}(D_{o}(r_{j})) A_{i}(r_{j})}$
28

DAD equations for Dual-frequency retrieval

$$\begin{bmatrix} dBZ_{m1}(r_{1}) - dBZ_{m1}(r_{2}) \end{bmatrix} = \mathbf{DAD}$$

$$= 10 \log_{10} \left(\frac{I_{b1}(D_{a}(r_{1}))I_{b2}(D_{a}(r_{2}))}{I_{b1}(D_{a}(r_{2}))I_{b2}(D_{a}(r_{2}))} \right) = [A_{1}(r_{1}) - A_{1}(r_{2})] + [A_{2}(r_{1}) - A_{2}(r_{2})]$$

$$\text{Let } M = \frac{I_{b1}(D_{a}(r_{1}))I_{b2}(D_{a}(r_{2}))}{I_{b1}(D_{a}(r_{2}))I_{b2}(D_{a}(r_{1}))}$$

$$\text{If } M = 1 \text{ (Rayleigh scattering)}$$

$$\text{Then } [dBZ_{m1}(r_{1}) - dBZ_{m1}(r_{2})] - [dBZ_{m2}(r_{1}) - dBZ_{m1}(r_{2})]$$

$$= -\left[\int_{0}^{r_{1}}k_{1}(s)ds - \int_{0}^{r_{2}}k_{1}(s)ds\right] + \left[\int_{0}^{r_{1}}k_{2}(s)ds - \int_{0}^{r_{2}}k_{2}(s)ds\right]$$

$$= \left[\int_{0}^{r_{2}}a_{1}R^{b_{1}}(s) - a_{2}R^{b_{2}}(s)ds\right] + \left[\int_{0}^{r_{2}}a_{2}R^{b_{2}}(s)ds - \int_{0}^{r_{1}}a_{2}R^{b_{2}}(s)ds\right]$$

$$= 2\int_{r_{1}}^{r_{2}}(a_{1}R^{b_{1}}(s) - a_{2}R^{b_{2}}(s))ds$$

$$\approx 2(r_{2} - r_{1})(a_{1}\overline{R}^{b_{1}} - a_{2}\overline{R}^{b_{2}})$$

$$\overline{R} = \left(\frac{DAD}{2(a_{1} - a_{2})(r_{2} - r_{1})}\right)^{1/b_{1}}$$

Outline

- Research Goal
- Background and Theoretical framework
- Space-based radar observations characteristics and analysis

• Microphysical model development for simulations

- Simulation of space-based radar observation
- Study and simulation of tropical storms
- Summary, conclusions and suggestion for future work

Example profiles from the airborne experiment

32

Stratiform rain model	\uparrow	Convective rain model
Dry snow		Dry graupel
Melting layer: Wet snow	Height —	Melting layer: Wet graupel
Rain		Rain
Surface	¥	Surface

O

Stratiform rain with bright band

Do (mm)

Do (mm)

14

12

10

8

10

9

8

log10(Nw)

do

Convective rain

O

Ze(Ku) = a + b*Ze(S) $k(Ku) = \alpha*Ze(Ku)^{\beta}$

	$Z_e(Ku) =$	$= a + b^* Z_e(S)$	$k(Ku) = \alpha^* Z_e(Ku)^\beta$		
Height (km)	а	b	α	β	
0.25	-0.74366	1.0497	0.0001645	0.85542	
0.5	-0.85534	1.052	0.0001666	0.85304	
0.75	-0.7614	1.05	0.0001449	0.86463	
1	-0.74952	1.0493	0.0001512	0.86247	
1.25	-0.81846	1.0517	0.000155	0.8603	
1.5	-0.75944	1.0501	0.0001198	0.88143	
1.75	-0.76781	1.0504	0.0001514	0.86103	
2	-0.7179	1.0493	0.0001349	0.87198	
2.25	-0.79386	1.0513	0.0001379	0.86896	
2.5	-0.84385	1.0528	0.0001662	0.85255	
2.75	-0.85484	1.0524	0.0001272	0.87239	
3	-0.7993	1.0519	0.0001534	0.85822	
3.25	-0.82464	1.0533	0.0001316	0.86955	
3.5	-0.80773	1.0525	0.0001337	0.8676	
3.75	-0.81402	1.0529	0.0001505	0.85876	
4	-0.81231	1.0514	0.0001766	0.84625	

ado

Outline

- Research Goal
- Background and Theoretical framework
- Space-based radar observations characteristics and analysis
- Microphysical model development for simulations

Simulation of space-based radar observations of precipitations

- Study and simulation of tropical storms
- Summary, conclusions and suggestion for future work

40

Convective

Longitude

Longitude

44

Ze(Ka)

Zm(Ka)

Simulation of Ku- and Ka-band radar observations using dual-polarization radar measurements

Five dual-polarization parameters:

 $\overline{\mathbf{u}}$

0.95

0.9

0.85

8.0

0.75

0.7

0.65

-12

-16

-18

-20

-22

-24

-26

en

Simulation of Ku- and Ka-band radar observations Signal structure with the second structure of the sec

Simulation of Ku- and Ka-band radar observations signal using dual-polarization radar measurements

Colorado State University

Outline

- Research Goal
- Background and Theoretical framework
- Space-based radar observations characteristics and analysis
- Microphysical model development for simulations
- Simulation of space-based radar observations of precipitations

Study and simulation of tropical storms

• Summary, conclusions and suggestion for future work

Simulation of Ka-band radar observations of tropical storm using TRMM-PR observation

Simulation of Ka-band radar observations of tropical storm using TRMM-PR observations

DSD parameters estimation of tropical storm using TRMM-PR observations

56

Summary

□ Observations of precipitation from space are discussed.

- Theoretical computations of radar reflectivity and specific attenuation of precipitation particles at 3 different radar frequencies are described, and the model relations of the two are constructed.
- Characteristics precipitation observations from a spaceborne PR are illustrated, and characterization of the vertical profile of reflectivity are performed.
- Drop size distribution (DSD) parameters using the PR observations are estimated and statistics and global map are shown.

Summary

- Characteristics of observations of precipitation by spaceborne dual-frequency radar (DPR) and dual-frequency retrieval techniques are discussed.
- Development of microphysical models for simulation of precipitation observations based on airborne radar observations are described.
- Methodologies of simulation of precipitation observations are described and results of the simulation using TRMM-PR observations and dual-polarization ground-based radar measurements are shown.
- □ Simulation of tropical storms observation and DSD parameters estimations are shown.

Conclusions

- □ Theoretical relations between Ze and k and variability of Ze with frequency can be used to simulate radar observations of precipitation from one frequency to another.
- Simulation of Ka-band observations based on TRMM-PR observations suggests that TRMM-like retrieval algorithm can be used in Ka-band channel because of stronger PIA(Ka). However, a loss of signal may occur, when strong attenuation is present, thus preventing the use of dual-frequency algorithm.
- Phase-height transition information obtained via dual-polarization measurements can be used to improve the simulation scheme.
- □ The simulation of a High Plain precipitation regime (CSU-CHILL) suggests that dual-frequency can be always applicable for this precipitation regime.
- Simulation of Ka-band observations of tropical storms suggest that for most part of storm cell, dual-frequency algorithms are applicable.

Colorado State

Suggestion for future work

- □ More airborne data from a variety of precipitation regimes (maritime and continental) should be included to further generalize the microphysical model.
- □ A quantitative simulation of DPR observations using long-term observations of the TRMM-PR on a global scale should be performed so that statistical characterizations of a global diversity of DPR observations can be constructed.
- □ A quantitative testing of dual-frequency algorithms on the simulated observations of the DPR should be done so that their robustness and uncertainty can be statistically characterized.
- □ More simulation of DPR observations using ground-based radar dualpolarization measurement should performed. A more sophisticated microphysical models could be further implemented such as snow on the ground and hail, based on dual-polarization radar measurements.

Acknowledgements

- Dr. V. Chandrasekar (My advisor)
- Committee members: Dr. Anura. P. Jayasumana, Dr. Branislav Notaros, and Dr. Paul W. Mielke
- ♦ Dr. V. N. Bringi, Dr. M. Thurai
- ✤ Members of the Radar and Communication lab.

Thank you

Questions ?

Back up slides

Space-based radar observations of precipitation: What are their general characteristics ?

***GPM-DPR**